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Abstract 

In this paper the (smooth irreducible) curves which can be constructed on cones over pro- 
jectively normal curves C C_ P’ are studied. It is shown that all smooth curves on such cones 
are projectively normal and a resolution for their homogeneous ideal is given, depending on the 
resolution of the ideal of C. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS Clussz&ztion. 14845; 14H50; 14MlO 

0. Introduction 

The aim of this paper is to give a construction for certain projectively normal (p.n.) 
curves in P”, iz 2 3, which will also furnish a resolution of the homogeneous ideal of 
the curve. 

The idea is to start from a projectively normal curve C C V, Y > 2,and to construct, 
on a cone AC V+l over C, a (smooth, irreducible) curve & 6hich passes through 
the vertex of A and meets its lines m times, not counting the vertex (hence C,,, is an 
m : 1 covering of C). 

This kind of construction is due to Jaffe (see [5]) and it is a generalization of the 
classical “Cayley monoidal construction” (e.g., see [l, 3, 41). 

The aim of this work is, once a bound for m in order for C,,, to exist is given, to 
prove that C,,, is p.n. (see Proposition 1) and eventually to get a resolution (which will 
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not always be minimal) of the ideal sheaf of & from the resolution of the ideal sheaf 
9 of C (see Proposition 2). 

In the last section examples of this kind of construction are given. 

1. Preliminaries 

Let C be a smooth, irreducible, non-degenerate projectively normal curve in p” = p;, 
where k is an algebraically closed field with char k = 0. Let deg C = d and y(C) = 9. 
It is quite easy to compute the degree and genus of the curve C,,, described above 
(when it exists). On the blow-up X of the cone A at its vertex, we have that (by 
abuse of notation we will denote with C and C,,, also their strict transforms on X): 

C-Co+dF, C,=mCo+(md+ l)F, 

where CO is the exceptional divisor and F a fiber on A’, while “c” denotes numerical 
equivalence. 

Thus. we have 

degC,=C,,,.C=mCi+(md+ l)+md=md+ 1, 

while2g(C,)-2=C~+C,~Kx=dm2+2m+C,~(-2Co+(2g-2-d)F)=dm2+2m- 
2+m(2y-2-d)=2mq+2d(T) -2, and so 

dG,)=v+d y 0 
Let us recall the necessary “ingredients” which allow the Cayley-Jaffe construction 

of the curve C, to work in our case (see [5, Section 21): 
(*) We need a triple (P, H, E), where P is a point on C, H a reduced hyperplane 

section of C with P E H; E E lmH + PI on C is made of distinct points and does not 
meet H. 

The curve C, will appear as the section cut on A by a hypersurface G of degree 
mfl such that (as schemes): /lflG=C,ULl U...UL~_I, where the Li’S are the 
lines on A over the points of H - P. 

Now we want to determine a bound on m which guarantees the existence of a smooth 
curve C,,,. Since mH is very ample on C, the only problem in (*) could be that P is 
fixed for ImH + PI. Observe that we can always find E,H, P as required when mH is 
non-special; in fact in this case the addition of a generic point P to mH will give again 
a non-special divisor, so (by R.R. Theorem), h”(C, &(mH + P)) = h’(C, &(mH)) + 1, 
and P is not fixed for lmH + PI. 

From the exact sequence 

we get that h’(C,Q(mH))=h2(~‘,4(m)). 
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If a resolution of 9 is 

where ,F, = @l, &W-IQ), i = 1 , . . . , r - 1, then (twisting by 0~ (m) and considering 
the short exact sequences into which the resolution above decomposes) it is easy to 
see that we have h2(Pr,~~(~))=0 whenever h’(P’,F~_i(m))=O, which we have for 
m > lllaX{CC,_~,,j} - r. 

One could also consider the more direct fact that h’(C, Q(mH)) = 0 for md > 2g - 
1; we prefer to give a bound on m with respect to the ai,j’s since we are con- 
cerned with studying the graded Betti numbers (the two bounds differ only in few 
cases). 

Better bounds for m, when a specific curve C is given, can be found with ad hoc 
considerations (e.g., see last section). 

It can also be noticed that we can view P’ C P+’ as the hyperplane {w,+l =0} and 
H = { 1= 0}, so that C,,, is given on A by a hypersurface of equation lw,“,, - g = 0 
(which cuts C, ULI U. . . U&l, the Li’s being the lines over the points of H - P 
(e.g. see [5]). In this case the ideal sheaf &,,, is (e.g. see [4]) 

This implies that when we apply this construction in the case r= 2, the curve C, 
turns out to be directly linked to a complete intersection (/1 in a surface in P3), hence 
it is p.n. and (by the Hilbeti-Burch Theorem) determinantal: its ideal sheaf #cc, is 
generated by global sections which come from the maximal minors of a (2 x 3)-matrix 
of forms, whose degrees must be 

d-l d-l m 

1 1 

A resolution of -y’c is given by the Eagon-Northcott complex: 

Notice that the resolution above (hence the ideal generation) could be non-minimal 
(when C, is a complete intersection, e.g. for d = 3, m = 1). 

The considerations in the next section can be viewed as a generalization of what we 
have just seen for Y = 2 to the case r 2 3, where we no longer have liaison to get that 
C, is p.n. nor the Hilbert-Burch theorem to find a resolution. 

Let us notice that the ideal of such C, do not arise, in general, by taking the Hilbert- 
Burch matrix of the base curve C in P3, viewing it over the coordinate ring of P4, 
and adding a suitable column (e.g., see Section 3). 
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2. Projective normality and a resolution of C, 

With notation as in Section 1, let us consider curves C,, m > 0, on X, with C,, E 
lmCo+(md+l)FI=ImC+FI. Let V=H”(X,&,~(C)),andS=S(V)=k[xo,x~,x~,..., 
x,+1], so we view P+’ as Proj(S). 

Let B = e4 H’(X, &(qC)); then notice that a resolution of B as an S-module is 
known (it corresponds to a resolution of e4 H”(X, bh(qC))), and it has the 
same graded Betti numbers as those of C C P’. Hence, we have 

O+fi._, +Fr-2+...+F, +S+B+O, 

where F~=@~~,S(-r,i), i= l,..., Y- 1. 
We want to show, when C, is irreducible and smooth, that its image in P”+’ (which 

is isomorphic to C,, since C,,, CO = 1, and which we will denote by C,,, again) is a pro- 
jectively normal curve. Moreover, we look for a resolution of A, = $,H’(X, &,,,(qC)) 
as an S-module (if C, is p.n. A, is its ring of coordinates). 

Let us make several remarks. 

Remark 1. Let AF = eq H’(X, &(qC)) = e4 H”(P’, clip, (4)); a resolution of AF as 
an S-module is well known (by viewing F as a line in Prt’ ): 

where L;=@(l),!+i), i= l,..., Y. 

Remark 2. From the exact sequence 

0 + Q(qC - F) + &(qC) 4 &(qC) + 0 

since, Vq > - 1, we have H’(F, Lcp(qC)) = H’(P’, lfpl (4)) = 0, and since C(i(qC) + 
&(qC) is surjective at the Ho-level, it follows that 

H’(X, 6’x(qC - F)) = H’(X, &(qC)), \Jq > -1. 

Remark 3. Let q > 0; from the exact sequence 

0 + &((q - 1)C) + &(qC) ---j Q(qC) + 0, 

since CC P’ is pn., and h*(X,&~((q- l)C))=h’(X,C’x((l -q)C+Kx))=O, we get 
exactness at HI-level, i.e. 

h’(X, Qy(qC)) = h’(X, &y:x((q - 1)C)) +h’(C, Q(qC)). 

Remark 4. Vq < -1, H’(X, Qy(qC - F)) = 0. 

This comes from the Kodaira Vanishing Theorem (note that -qC+F is ample). 
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Remark 5. A generic curve r, E IrnCl on X is smooth and irreducible, and its image 
in Prf’ (which we still will denote by r,) is cut out on X by a hypersurface of 
degree m, so it is projectively normal. 

Proposition 1. Let C, A be as in Section 1. Then all the smooth, irreducible Curves 
on A are projectively normal (in particular, Qm 2 max{ai,j} - r there is a smooth 
irreducible curve C,,, on A which is p.n). 

Proof. It is easy to check that the only smooth irreducible curves on A are those of 

type C,, m 2 0 or r,, m > 1, which come from divisors of type mCo + (md + l)F, or 
rnC0 + mdF on X, respectively (those have intersection 0 or 1 with Cc; all the others 
will be singular at the vertex). 

We already noticed that the curves r, are p.n. (Remark 5) so let us consider 
the curves Cm; it is enough to show that one curve in IC,,, / on A is p.n. to have 
that all the smooth curves in the class are p.n. In fact, C, is p.n. if and only if 

h’P’+‘,&C,,(q))= 0, Qq E Z; let us check that this fact depends only on the class 
/C,/. Consider the exact sequence 

where .&,,,,,I =&i-C,) is the ideal sheaf of C,,, in CA. 
Since A is p.C.M., we have that h’(P’+‘,&(q))=h2(P“+‘,.fi(q))=0, Qq g Z, and 

so we get that h’(P’+‘,~~~(q))=h’(P’+‘,~a~,c,(q)), where the second depends only 
on the class of C, as a divisor on A. 

Now let us show that C, is p.n.; in the linear system IC, j = Ir, + F I we can consider 
(Qm > 1) a reduced and reducible curve C, = r, U F given by a smooth, irreducible 
f,,, and a line F, with r, n F given by m distinct points. 

Since Qq > m the sequence 

is exact both at the Ho and at the H’ level, then, for q > m, we get 

h”(x, “C,(4C)) = h”(rm, C!,(qC)) + q - m + 1, (1) 

h’W> @“>(qC)) = h’(r,, fiGti(qc)). (2) 

Now consider the exact sequence 

0 + Px((q - m)C - F) --j &(qC) + Qr(qC) + 0. (3) 
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We want to show that (3) is HO-exact, Vq E Z. If q-m ~0, this is true by Remark 4; 
when q > m, consider the exact sequence 

0 i l&((q - m)C) 4 &(qC) + Q_(qC) +O. (4) 

We have that (4) is exact at the Ho and Hi level, so, from Remark 2, and by (1) 
and (2) we have that also (3) is exact at the Ho and H’ level. 

This implies that for the embedded curve C, G Pr+’ the map 

is surjective, hence H’(P’+‘,Jii~(q)) = 0, Vq E 27. 
Then, when we choose an m such that one (hence the generic) curve C,,, E lmC + Fl 

is irreducible and smooth, we will have again that Hl(P’+l, S&(q)) = 0, Yq, since this 
property is an open one in the Hilbert scheme of curves of given genus and degree of 
P”+‘, and the reduced curve we have considered before is a deformation of the generic 
curve in H’(P’+’ ,UA(C,)). Thus, C,,, 2 Pr+’ . IS projectively C.M., hence projectively 
normal. ??

Now, let C, C A C P”+’ be a (smooth, irreducible, p.n.) curve as before, and consider 

the exact sequence 

0 + Gi((q - m)C - F) -+ C&((q - m)C)+ GtF((q - m)C) + O. 

Since resolutions of AF (see Remark 1) and of B = e4 H’(X, &(qC)) are 
known, and the above sequence is exact at the Ho level (see Remark 2), in or- 
der to find a resolution of C,,, = e4 H’(X, &((q - m)C - F)) as S-module, we can 
consider the short exact sequences which fit into the following diagram: 

Y Y 
O--+C,+B(-m)--+&(-m)+O 

T T 
O-+S(-m)-+S(-m)---+O 

T T 
N-K 
T T 
0 0 

The resolution for N (resp. K) comes from the rest of the resolution for B(-m) (resp. 
AF(-m)). We thus have (from the Snake Lemma) a short exact sequence 

O+N+K+C,,,+O 

and we know the resolution of N and of K. The mapping cone construction then gives 
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a resolution for C,: 

O-C,- B(-m)-A~(-m)-O 

T T T 
&f-m) St-m) St-m) 

T 
M--m)G3fi(-m) 4(-m) h(-m) 

T T T 
M-m)@Fz(-m) M-m) L2(-m) 

T T T 
T T T 

L,(-m)@F,_I(-m) &-1(-m) L-If-m) 

T T 1 
0 0 LA-m) 

T 
6 

(We thank the referee for suggesting this proof, which is more direct than the one we 
had originally given.) 

Then consider the exact sequence 

0 ---) cx((q - m)C - F) + &(qC) 4 Ocm(qC) + 0 

(which is exact at the HO-level since C, is p.n.) and again use a mapping cone in 
order to compute a resolution (may be not minimal) of A,: 

0-C,,,-----+B ,O 

T 
b(-m) 

T 
Lz(-m)@6(-m) 

T 
Ld-m)@fi(-m) 

0 

T s 
T 
fi 
T 
fi 
T 
T 

6-I 
T 
0 

s 
T 

L,(--m)@fi 

T 
LA-m)@Ft(-m)@F2 

T 
T 

LI-l(-m)$F,-2(-m)~F,-, 

T 
LA-m)tBF,_i(-m) 

T 
0 
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So one gets (via sheafifying the resolution of A,): 

Proposition 2. Let C,,, be as above, then a resolution (maybe non-minimal) of 
ideal shegf .J& 2 I& I is 

the 

3. Examples 

3.1. Curves in P4 

May be the most interesting case of our construction is for r = 3, since the resolutions 
of p.n. curves in P3 is well known, while they are not so easy to compute for p.n. 
curves in P4. 

By the Hilbert-Burch Theorem, every projectively normal curve C C P3 is determi- 
nantal, and so its ideal sheaf Y is generated by global sections which come from the 
maximal minors of a p x (p + 1 )-matrix of forms, and a resolution of 9 is given by 
the Eagon-Northcott complex 

When C, C P4 exists, we get a resolution 
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In general, C, can be constructed when m 2 maxi - 3, but there are cases when 
the construction can be carried on also for smaller values of m (for which mH is 
special); for example, let C be a Cl; in this case IH / has degree 7 = 2y - 3, and 
index of speciality = 1, hence its hyperplane divisors can be viewed as obtained from 
a canonical one minus one point, so if one adds that point, say P, to a divisor H, the 
system IH $-PI = l&l has again index of speciality = 1, i.e. P is not fixed for it and 
condition (*j holds, hence we can construct a curve Cr = Ct C P4 on a cone over C. 

Notice that Cr is a canonical curve and is non-trigonal (otherwise it would have 
XI’ trisecants and C should have a node, being its projection from one point), so it is 
generated by quadrics (it is actually the complete intersection of three quadricsj and it 
is immediate to check that the resolution shown above is not minimal for it. 

Hence there are cases when the resolution we gave is actually non-minimal; anyway 
we notice that it will surely be minimal (for trivial reasons) when m > maxi( and 

d, # 3, n,j, v6.i. 

3.2. Curvrs over complete intersections in P3 

Let C C P3 be the complete intersection of two surfaces of degree a, 6; then the 
resolution of C is 

0+&-a - bj~C~~~(-a)$Gp,(-b)t~~O, 

hence mH is non-special for m > a + b - 3 and for these values of m we can obtain 
a curve C, on A. 

A resolution of C, is 

It is easy to check that this resolution has to be minimal when a, b > 4 and m > a + h, 
but those bounds are far from being sharp, as the following examples will 
show. 
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Let us consider the case a = b = 2: when m = 1 (hence C and Cl are elliptic normal 
curves), the resolution above is not minimal, since the minimal one is 

For each m > 2, instead, the resolution is minimal; this is obvious for m = 2 and 
m > 4, while for m = 3 we have that C, = C:j C P4 is a curve of degree 13 and genus 
15 for which we get a resolution: 

Is this resolution minimal? One could think that maybe it is not; that there is a re- 
dundant addendum &4(-4) (i.e. a redundant syzygy and a redundant generator in 
degree 4). So the question is: can two forms of degree 4 (and two of degree 2) be 
enough in order to generate the homogeneous ideal of Cs? The answer, which implies 
that the above resolution is minimal, is “No”. One can check this in the following 
way: we can work on the ideal of a generic hyperplane section Z of Cs (which will 
have the same graded Betti numbers since Cs is pn); Z is reduced and consists of 
13 points in P3 which are contained in an elliptic curve Ed, hence on two quadric 
surfaces. 

Consider a smooth quadric Q containing Z and a plane model of it: then the hy- 
perplane sections of Q are given on the plane by the tonics through two points PI, 9, 
while Z corresponds to 13 other points P3,. . . , P,s. 

The other quadric containing Z gives on the plane a quartic curve D passing with 
multiplicity 2 through PI, 9 and simply through Pj, . . . , Pl5; the quartic surfaces through 
Z correspond to the linear system of curves of degree eight containing Ps, , PIN 
and having Pl,P2 as (at least) quadruple points. A simple computation shows that 
this linear system contains at least 45 - 33 = 12 independent curves; among them at 
most nine are of type D U D’, where D’ is another quartic containing PI, PI as double 
points, hence there must be at least three independent curves not composed with D; 
those correspond to the three quartic surfaces through Z in P3 which are needed as 
generators. 

Hence the resolution is minimal. 

3.3. Bielliptic curves 

A bielliptic curve is a (smooth, irreducible, non-hyperelliptic) curve %? endowed with 
a 2 : 1 morphism 4 : %? -+ E, where E is a (smooth, irreducible) elliptic curve. 

Let us consider an elliptic normal curve E,.,, E P’; for m = 2, we get that we 
can obtain two bielliptic curves PI and C, in Vf’ on a cone over E,.,,. l-2 is 
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actually a canonical bielliptic curve C,?l;*, and its resolution is known [6] (see also 

PI). 
Also Cz is bielliptic and p.n. It has degree 2r + 3 and genus r + 3 and it can be 

viewed as the projection of a canonical bielliptic curve Cf$” E W+* from one of its 
points. 

Since the resolution of the ideal of E,+I is known (it has the same Betti numbers 

as r + 1 generic points in V), one can compute a resolution for these curves using 
Proposition 2. 

For r = 3, hence C2 = Cl C P4, we get the minimal resolution 

For r = 4, so C, = C:’ C P4, we get 

In this case the resolution could be non-minimal; the question is whether we need 
the four cubits among the generators. 

The five quadrics intersect in the elliptic normal cone /i on Es, hence a cubic surface 
will cut on it a curve D = C2 U LI U. . U La, where the L;‘s and the tangent line to Cz 
at V, the vertex of the cone, cuts on Es a hyperplane divisor (this is the Cayley-Jaffe 
construction; see [5]). 

Hence, the curve D has, at V, a tangent space of dimension 4 and the intersection 
with any other cubic surface through C2 can lower this dimension only by one, so we 
need at least another three cubic surfaces to get the tangent line of Cl. 

Thus, we need four cubic forms to generate the ideal of Cl, and the resolution is 
minimal. 
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